Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9864, 2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684734

RESUMO

Essential tremor (ET) is a neurological disease that impairs motor and cognitive functioning. A variant of the Lingo-1 genetic locus is associated with a heightened ET risk, and increased expression of cerebellar Lingo-1. Lingo-1 has been associated with neurodegenerative processes; however, neuroprotection from ET-associated degeneration can be conferred by the protein Sirt1. Sirt1 activity can be promoted by Resveratrol (Res) and 1,25-dihydroxyvitamin D3 (VitD3), and thus these factors may exert neuroprotective properties through a Sirt1 mechanism. As Res and VitD3 are linked to Sirt1, enhancing Sirt1 could counteract the negative effects of increased Lingo-1. Therefore, we hypothesized that a combination of Res-VitD3 in a harmaline injection model of ET would modulate Sirt1 and Lingo-1 levels. As expected, harmaline exposure (10 mg/kg/every other day; i.p.) impaired motor coordination, enhanced tremors, rearing, and cognitive dysfunction. When Res (5 mg/kg/day; i.p.) and VitD3 (0.1 mg/kg/day; i.p.) were given to adult rats (n = 8 per group) an hour before harmaline, tremor severity, rearing, and memory impairment were reduced. Individual treatment with Res and VitD3 decreased Lingo-1 gene expression levels in qPCR assays. Co-treatment with Res and VitD3 increased and decreased Sirt1 and Lingo-1 gene expression levels, respectively, and in some cases, beneficial effects on behavior were noted, which were not seen when Res or VitD3 were individually applied. Taken together, our study found that Res and VitD3 improved locomotor and cognitive deficits, modulated Sirt1 and Lingo-1. Therefore, we would recommend co-treatment of VitD3 and Res to leverage complementary effects for the management of ET symptoms.


Assuntos
Tremor Essencial , Harmalina , Resveratrol , Sirtuína 1 , Animais , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Sirtuína 1/metabolismo , Sirtuína 1/genética , Masculino , Ratos , Tremor Essencial/tratamento farmacológico , Tremor Essencial/metabolismo , Tremor Essencial/genética , Harmalina/farmacologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Calcitriol/farmacologia , Calcitriol/uso terapêutico , Modelos Animais de Doenças , Comportamento Animal/efeitos dos fármacos , Ratos Sprague-Dawley , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
2.
Acta Neurol Belg ; 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37624565

RESUMO

This review is attempted in view of World Health Organization (WHO) warning on Monkeypox virus (Mpox) to summarize the available data regarding the potential effect on central nervous system (CNS), its complications, and diagnostic methods. We combed various international databases (including Scopus, PubMed, Web of Science, and Google Scholar) for articles mentioning Mpox infection, orthopox infection, and the central nervous system that were published between the years 2000 and 2022. Further evidence was evaluated from relevant studies published in the literature. There is emerging evidence of central nervous system neurological involvement. In addition to encephalopathy, which is one of the most serious neurological complications of Mpox, the most common complications of Mpox infection are headache, weakness, myalgia, anorexia, and altered consciousness. Anxiety and depression have also been identified as the most common psychiatric symptoms in these patients.

3.
Mini Rev Med Chem ; 23(15): 1560-1574, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36698237

RESUMO

Adaptive responses to stressful stimuli in the environment are believed to restore homeostasis after stressful events. Stress activates the hypothalamic-pituitary-adrenocortical (HPA) axis, which releases glucocorticoids (GCs) into the bloodstream. Recently, agmatine, an endogenous monoamine was discovered to have the potential as a pharmacotherapy for stress. Agmatine is released in response to certain stress conditions, especially those involving GCs, and participates in establishing homeostasis disturbed by stress following GC activation. The therapeutic potential of agmatine for the management of psychological diseases involving stress and depression is promising based on a significant amount of literature. When exogenously applied, agmatine leads to reductions in levels of GCs and counteracts stress-related morphologic, synaptic, and molecular changes. However, the exact mechanism of action by which agmatine modifies the effects resulting from stress hormone secretion is not fully understood. This review aims to present the most possible mechanisms by which agmatine reduces the harmful effects of chronic and acute stress. Several studies suggest chronic stress exposure and repeated corticosteroid treatment lower agmatine levels, contributing to stress-related symptoms. Agmatine acts as an antistress agent by activating mTOR signaling, inhibiting NMDA receptors, suppressing iNOS, and maintaining bodyweight by activating α-2adrenergic receptors. Exogenous administration that restores agmatine levels may provide protection against stress-induced changes by reducing GCs release, stimulating anti-inflammatory processes, and releasing neuroprotective factors, which are not found in all therapies currently being used to treat stress-related disorders. The administration of exogenous agmatine should also be considered a therapeutic element that is capable of triggering a neural protective response that counters the effects of chronic stress. When combined with existing treatment strategies, this may have synergistic beneficial effects.


Assuntos
Agmatina , Agmatina/farmacologia , Agmatina/uso terapêutico , Glucocorticoides/farmacologia , Transmissão Sináptica , Transdução de Sinais
4.
Naunyn Schmiedebergs Arch Pharmacol ; 393(7): 1229-1237, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32303785

RESUMO

Carvacrol is a monoterpene with neuroprotective effects in several animal models of neurodegeneration, including epilepsy, ischemia, and traumatic neuronal events. In this study, we aimed to examine the effects of carvacrol on neurodegeneration induced by lead acetate in rats. A total of 50 male Wistar rats were divided into five equal groups. The control group received drinking water, while the neurotoxic group was exposed to 500 ppm of lead acetate in drinking water for 40 days. The three remaining groups, which were also exposed to 500 ppm of lead acetate, received carvacrol at doses of 25, 50, and 100 mg/kg orally for 40 days. The Morris water maze test was employed to examine spatial learning and memory. Pathological damage to the hippocampus was determined by Nissl staining. The level of malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) were detected using biochemical analysis and the free radical scavenging activity as evaluated by the DPPH test. Administration of carvacrol significantly restored learning and memory impairment induced by lead acetate. Moreover, carvacrol ameliorated neurodegeneration, antioxidative capacity, and lipid peroxidation in the hippocampus of rats exposed to lead. The present results provide a rationale for the inhibitory role of carvacrol in the attenuation of lead-induced neurotoxicity.


Assuntos
Cimenos/farmacologia , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/prevenção & controle , Compostos Organometálicos/toxicidade , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Catalase/metabolismo , Morte Celular/efeitos dos fármacos , Cimenos/administração & dosagem , Relação Dose-Resposta a Droga , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Fármacos Neuroprotetores/administração & dosagem , Síndromes Neurotóxicas/etiologia , Ratos , Ratos Wistar , Aprendizagem Espacial/efeitos dos fármacos , Superóxido Dismutase/metabolismo
5.
Iran J Basic Med Sci ; 22(2): 154-159, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30834080

RESUMO

OBJECTIVES: The main goal of the current research was to examine the effects of Berberine (BBR) on apoptotic signaling and hippocampal oxidative stress induced by common carotid artery occlusion. MATERIALS AND METHODS: Chronic cerebral hypoperfusion (CCH) model was created by occluding the two common carotid arteries (two-vessel occlusion [2VO]) permanently. BBR (50 and 100 mg/kg/daily) was intra-gastrically administered to ischemic rats. Neuronal survival was evaluated by Nissl staining. The levels of malondialdehyde (MDA) and antioxidant enzymes, including catalase (CAT) and superoxide dismutase (SOD), along with the activities of caspase 3 were estimated in the hippocampus 2 month after treating the rats with 2VO. RESULTS: According to findings of the present research, the BBR therapy inhibited the neuro-degeneration of hippocampus. BBR also significantly decreased the amount of MDA and activity of caspase 3 in the hippocampus. Furthermore, the administration of BBR alleviated the lowered activities of SOD and CAT after 2VO surgery. CONCLUSION: The antioxidant and antiapoptotic properties of BBR might play important roles in improving functional outcomes and might have significant neuroprotective effects on the CCH damage.

6.
Iran J Basic Med Sci ; 21(1): 53-58, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29372037

RESUMO

OBJECTIVES: The major objective of the present study was to investigate the potential neuroprotective effect of berberine chloride on vascular dementia. Berberine, as an ancient medicine in China and India, is the main active component derived from the Berberis sp. Several studies have revealed the beneficial effects of berberine in various neurodegenerative disorders. MATERIALS AND METHODS: To induce vascular dementia, chronic bilateral common carotid artery occlusion was performed on male Wistar rats. After surgery, the rats were treated daily by oral administration of berberine chloride (50 mg/kg) for two months. The cognition function of treated rats, were evaluated by Morris Water Maze (MWM) test. In addition, Nissl and TUNEL staining were chosen to assess neuronal damage within the hippocampal CA1 area. RESULTS: It was obvious that chronic cerebral hypoperfusion (CCH), caused cognitive impairment and neuronal damages within CA1 hippocampal subregion. Berberine chloride was able to prevent cognitive deficits, (P<0.05) and reversed CCH-induced hippocampal neuronal loss and apoptosis, (P<0.05). CONCLUSION: Berberine chloride may be considered as a potential treatment for cognitive deficits and neuronal injury caused by CCH in the hippocampal CA1 area.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...